Neue Heizung - Welche ist die Richtige und was wird gefördert?

Haus & Grund - Bautzen

Ihr Referent: Stefan Thieme-Czach

Sächsische Energieagentur – SAENA GmbH Kostenfreie Angebote - Fachbereich Energieeffizientes Bauen

- > Initial- und Fachberatungen für Bauherren, Kommunen und KMUs
- > Durchführung von Schulungs- und Weiterbildungsveranstaltungen
- > Netzwerkarbeit für viele Zielgruppen (z.B. Energie-Experten Sachsen)
- > Fachbroschüren und Filme zu vielen Themen

www.saena.de/Fachberatung.html www.saena.de/veranstaltungskalender.html www.saena.de/energieexperten-sachsen.html www.saena.de/broschuren.html

Europäische Gebäuderichtlinie – Ziel Nullemissionsgebäude bis 2050

"Nullemissionsgebäude": Gebäude mit sehr hoher Gesamtenergieeffizienz, das keine oder sehr geringe Energiemenge benötigt, keine CO2-Emissionen aus fossilen Brennstoffen am Standort verursacht und keine oder eine sehr geringe Menge an betriebsbedingten Treibhausgasemissionen verursacht.

- ab 2030 alle neuen Gebäude Nullemissionsgebäude sein ab 2028 Öffentliche;
 bis 2050 sollte Gebäudebestand dekarbonisiert sein
- Lebenszyklus-Treibhauspotenzial für Neubau ausweisen
- bestehende Gebäude Mindestvorgaben für die Gesamtenergieeffizienz
- Renovierungspass bis Ende 2025 als freiwilliges Instrument einführen
- Daten zum Bestand erhalten; Worst Performance Building

Erkenntnisse zum realen Wärmebedarf des sächsischen Gebäudebestandes

- sehr ungenügende Datenlage
- für den Sektor Wohnen wurde aus den Daten des Zensus 2011 und den Daten der Studie "Bereitstellung ausgewählter Daten zur Energiewirtschaft im Freistaat Sachsen; Prognose 2016 – IE Leipzig" ein Wert von 114 kWh/m²a abgeleitet
- Bericht "Wohnen und Sanieren Empirische Wohngebäudedaten seit 2002 des UBA" für Sachsen 122 kWh/m²a – niedrigster Wert aller Bundesländer
- Keine Erkenntnisse zum Gebäudewärmeverbrauch der anderen Bereiche

Was wird gebraucht?

- in folgenden Jahren großer Bedarf an Erneuerung der Wärmeversorgung
- Bund setzt auf
 - bei Wärmepumpen, Biomasse und Solarthermie (bzw. Hybrid),
 - dafür jedoch ggfs. Niedertemperaturverteilsysteme +
 - gewisser Dämmstandard erforderlich
 - sowie Fernwärmeversorgung (Hochtemperatur, KWK aber H2-ready)
 - -> sukzessive anteilig mit EE (Abwärme, Solarthermie, Pellets etc.)
 - und Wasserstoff (Heizungen die auf 100% H2 umrüstbar sind)

gesicherte Strom- und Wärmeversorgung nötig

Gebäudeenergiegesetz (Änderungen)

- §1 Abs. 3 überragendes öffentliches Interesse
- §3 Abs. 1 Nr. 30 a unvermeidbare Abwärme (Industrie- oder Gewerbeanlage oder im tertiären Sektor)
- Anforderungen an Anrechnung EE-Strom, Berechnungsverfahren, Gebäudehülle bleiben wie aktuell gefordert!
- §34-45 entfallen (bisherige EE-Nutzung und Ersatzmaßnahmen)
- §46 Aufrechterhaltung energetischer Qualität

- §47 entfall Nachrüstpflicht Geschossdecke wegen mangelnder Wirtschaftlichkeit nur noch bei selbstbewohnten EFH/ZFH
- §57 Veränderungsverbot (Verschlechterung der energetischen Qualität Anlagentechnik)
- §60a,b,c Prüfung und Optimierung Wärmepumpen, Heizungsanlagen, hydraulischer Abgleich erst ab 6 WE
- §64 Austauschpflicht externe Heizungs- oder Trinkwasserpumpen bis 31.12.2026 wenn noch keine Effizienzpumpen erst ab 6 WE
- §69 Dämmpflicht für bestehende Heizungs- und Warmwasserleitungen in unbeheizten Räumen (entfall Ausnahme Nachrüstpflicht)

• §71 Einführung 65% EE-Anteil für neue Heizung (auch Gebäudenetz), Nachweispflicht Erfüllt wenn:

- §71b Hausanschlussstation zum Anschluss an Wärmenetz (Übergangsfristen!)
- §71c elektrische Wärmepumpe
- §71d Stromdirektheizung (bei Gebäuden 30-45% Unterschreitung Neubauanforderungen)
- §71e Solarthermie
- §71f flüssige oder gasförmige Biomasse, grüner oder blauer Wasserstoff
- §71g feste Biomasse (Pflicht solare Warmwasserbereitung, ggfs. Staubfilter)
- §71h Hybridsysteme (Wärmepumpe mit 30-40% Leistung der Heizlast, Gasbrennwert oder Solar mit flüssiger oder gasförmige Biomasse bzw. grünen oder blauen Wasserstoff 60%)
- §71k 100% Wasserstoffheizung (Übergangsfristen!)

- §71 Abs. 4 Nr. 8 Übergangsvorschriften Kommunale Wärmeplanung (Einführung 65% EE-Anteil für neue Heizung in bestehende Gebäude)
- Erfüllungspflicht erst wenn:

Heizung Beratungspflicht!)

- -bei Gemeinden mit mehr als 100.000 EW KWP vorliegt bzw. spätestens 30. Juni 2026
- -bei Gemeinden mit mehr <= 100.000 EW KWP vorliegt bzw. spätestens 30. Juni 2028 sonstige:
- -bei geplanter Verwendung von Biomasse oder grünem oder blauem Wasserstoff 15% ab 2029, 30% ab 2035 und 60% ab 2040 nachzuweisen (bei Einbau solch einer
- -Heizungshavarie 5 Jahre Übergangsfrist

- Mieterschutzregeln Wärmepumpe, Gasheizung (Biomasse, Wasserstoff)
- Betriebsverbot für Heizkessel, Ölheizungen § 72
 - wie bisher: älter als 30 Jahre und nicht Brennwert- oder
 Niedertemperaturkessel -> außer Betrieb setzen
 neuer Zusatz (Ausnahme es wird keine fossile Energie genutzt und es ist ein Hybridsystem)
 - neu: ab 01.01.2044 keine fossilen Energieträger für alle Heizkessel

SO FÖRDERN WIR KLIMAFREUNDLICHES HEIZEN: DAS GILT AB 1. JANUAR 2024*

30% GRUNDFÖRDERUNG

Für den Umstieg auf Erneuerbares Heizen. Das hilft dem Klima und die Betriebskosten bleiben stabiler im Vergleich zu fossil betriebenen Heizungen.

30% EINKOMMENSABHÄNGIGER BONUS

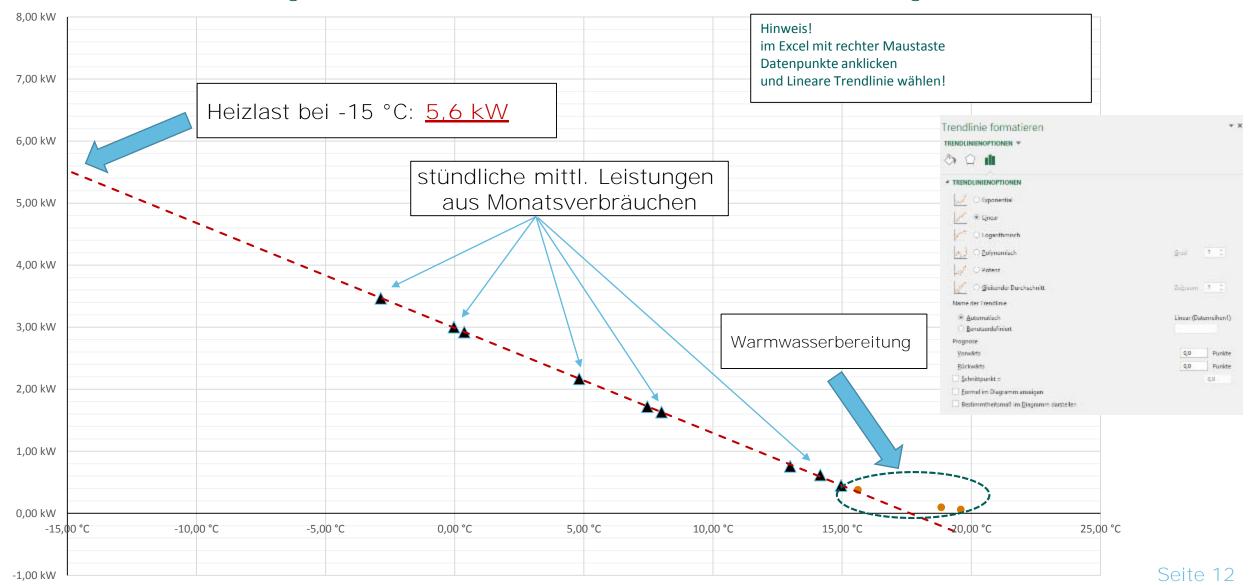
Für selbstnutzende Eigentümerinnen und Eigentümer mit einem zu versteuernden Gesamteinkommen unter 40.000 Euro pro Jahr.

20% GESCHWINDIGKEITSBONUS

Für den frühzeitigen Umstieg auf Erneuerbare Energien bis Ende 2028. Gilt zum Beispiel für den Austausch von Öl-, Kohleoder Nachtspeicher-Heizungen sowie von Gasheizungen (mindestens 20 Jahre alt).

BIS ZU 70% GESAMTFÖRDERUNG

Die Förderungen können auf bis zu 70 % Gesamtförderung addiert werden und ermöglichen so eine attraktive und nachhaltige Investition.



SCHUTZ FÜR MIETERINNEN UND MIETER

Mit einer Deckelung der Kosten für den Heizungstausch auf 50 Cent pro Quadratmeter und Monat. Damit alle von der klimafreundlichen Heizung profitieren.

Schätzung der Jahresheizlast mittel Excel (Trendlinie hinzufügen)

Heizlastberechnung nach DIN EN 12831

Wärmeverluste=Wärmezufuhr

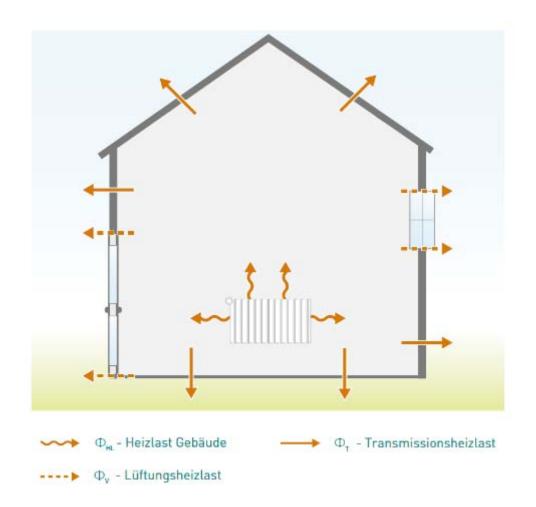
Normaußentemperatur (Dresden -14 °C)

Normnutzungstemperatur (z.B. 20°C)

Raumheizlast

 $\Phi_{\mathsf{HL},\mathsf{i}} = \Phi_{\mathsf{T},\mathsf{i}} + \Phi_{\mathsf{V},\mathsf{i}} \ (+ \Phi_{\mathsf{HU},\mathsf{i}})$

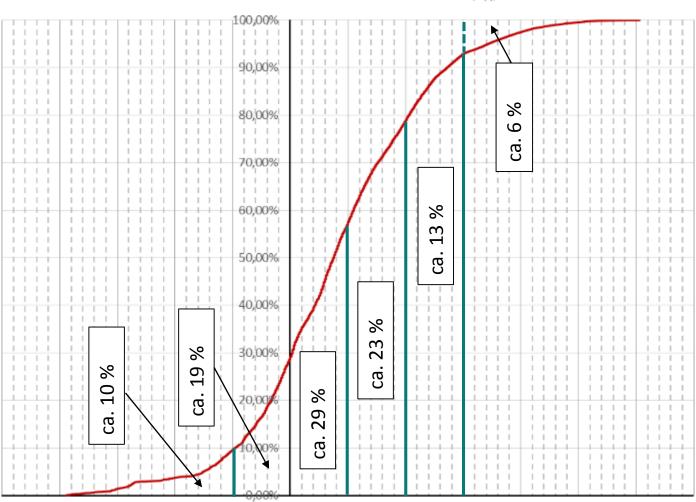
 $\Phi_{T,i}$ Transmissionsheizlast Raum [W]


 $\Phi_{V,i}$ Lüftungsheizlast des Raum [W]

Φ_{HU,i} optionale zusätzliche Aufheizleistung bei

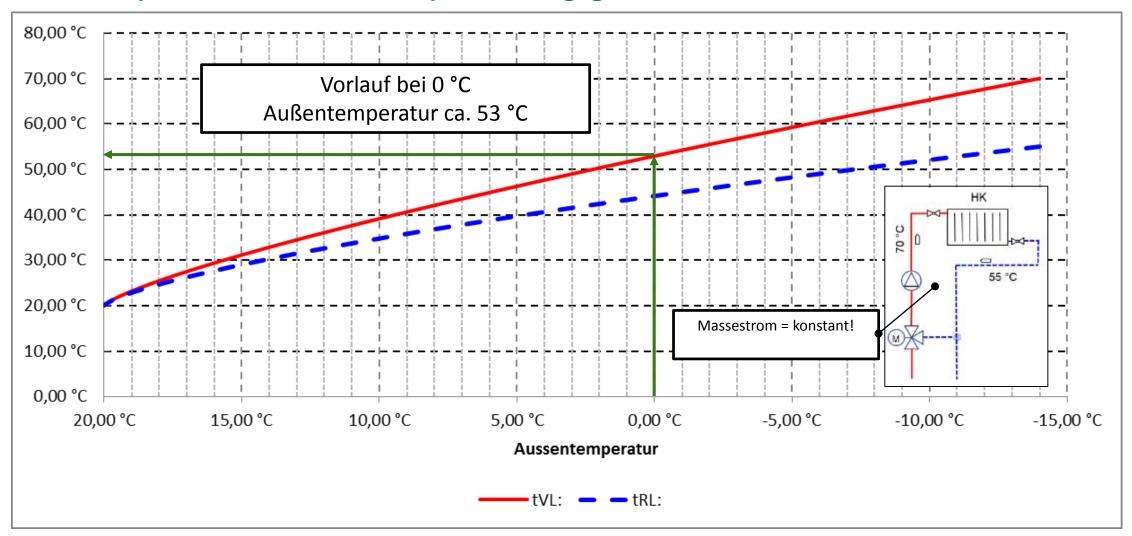
unterbrochenem Heizbetrieb [W]

Gebäudeheizlast


ΦHL, Geb = ΣΦΤ,i + Σ{MAX(ζ^* ΦV,i ; 0,5* ΦV,min,i)} + ΣΦΗU,i

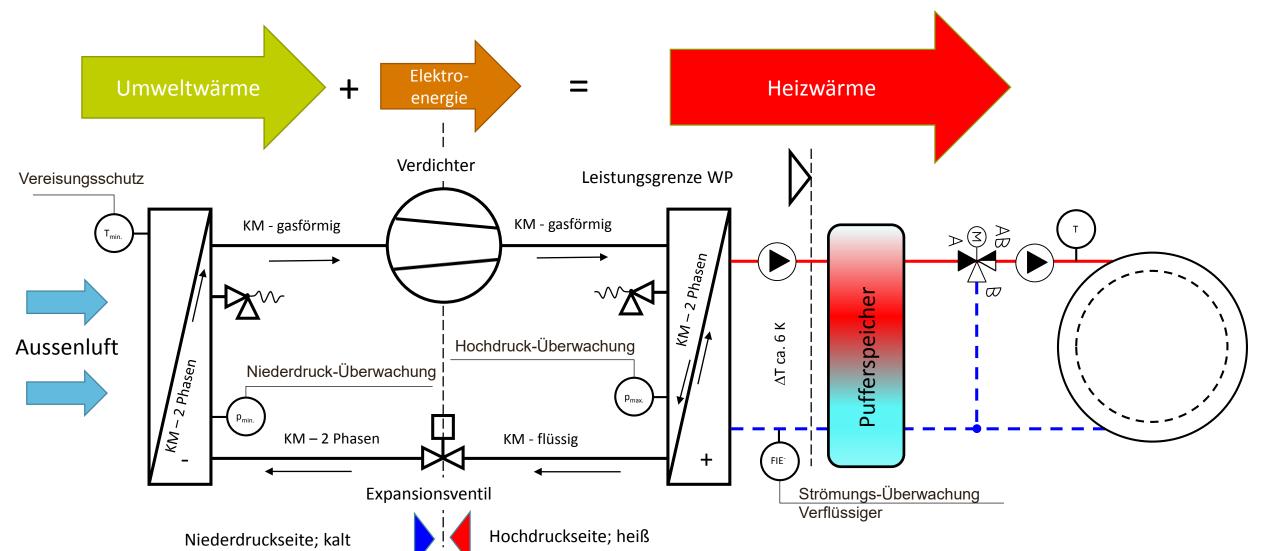
Bei welcher Außentemperatur wird wieviel Heizenergie verbraucht (Heizgrenztemperatur 15°C)?

% Jahresheizwärmeverbrauch = $f(T_A)$

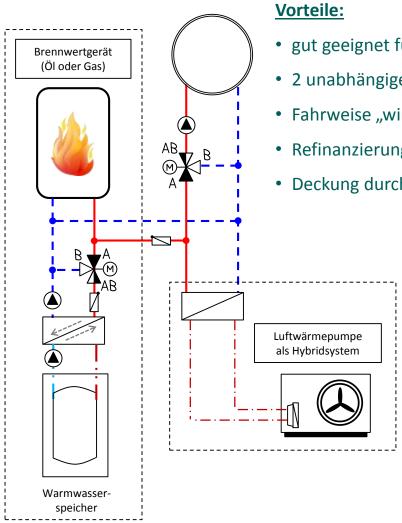

65 Prozent der Wärmeenergie wird bei Temperaturen > 0 ° Celsius verbraucht.

Temperaturbereich	Anteil Heizarbeit
von T _{AU,Norm} bis -5°C	ca. 10 %
von -5°C bis 0°C	ca. 19 %
von 0°C bis 5 °C	ca. 29 %
von 5°C bis 10 °C	ca. 23 %
von 10°C bis 15 °C	ca. 13 %

Schätzung Anteil Heizarbeit bei verschiedenen Außentemperaturbereichen



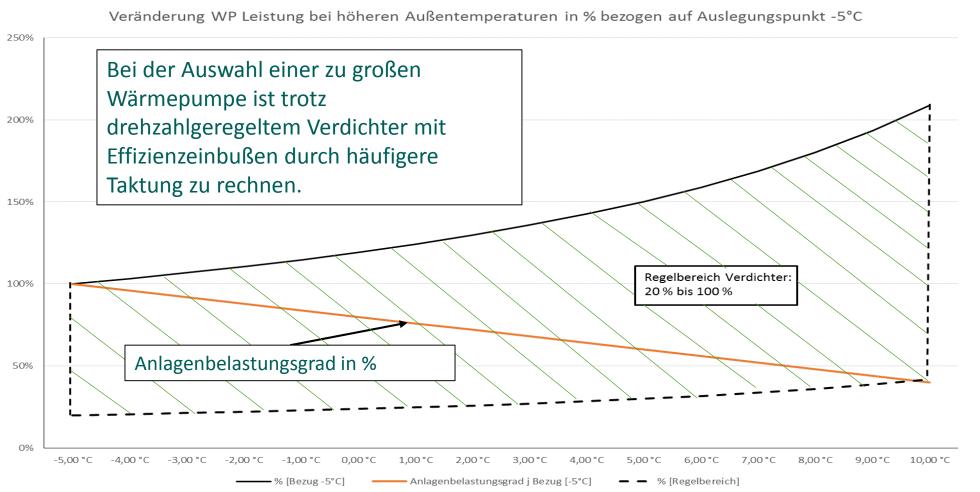
Heizkurve (Tv//TR = 70° C//55 $^{\circ}$ C) witterungsgeführt



Prinzipschema Luftwärmepumpe; Sensorik KM Kreis

Bivalente Heizsysteme/ Hybridsysteme

- gut geeignet für Nachrüstung auch für 70°C//50°C Öl- oder Gasanlagen
- 2 unabhängige Energieträger
- Fahrweise "wirtschaftlichster Erzeuger"
- Refinanzierung abhängig vom Energieträgerpreis
- Deckung durch WP 50-80%

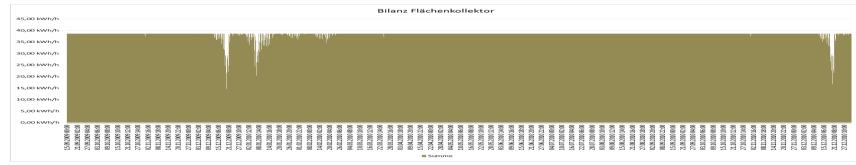


Quelle: Buderus

Seite 17 Quelle: Viessmann

Warum ist die korrekte Auslegung der Leistung der Wärmepumpe im Bivalenzpunkt wichtig

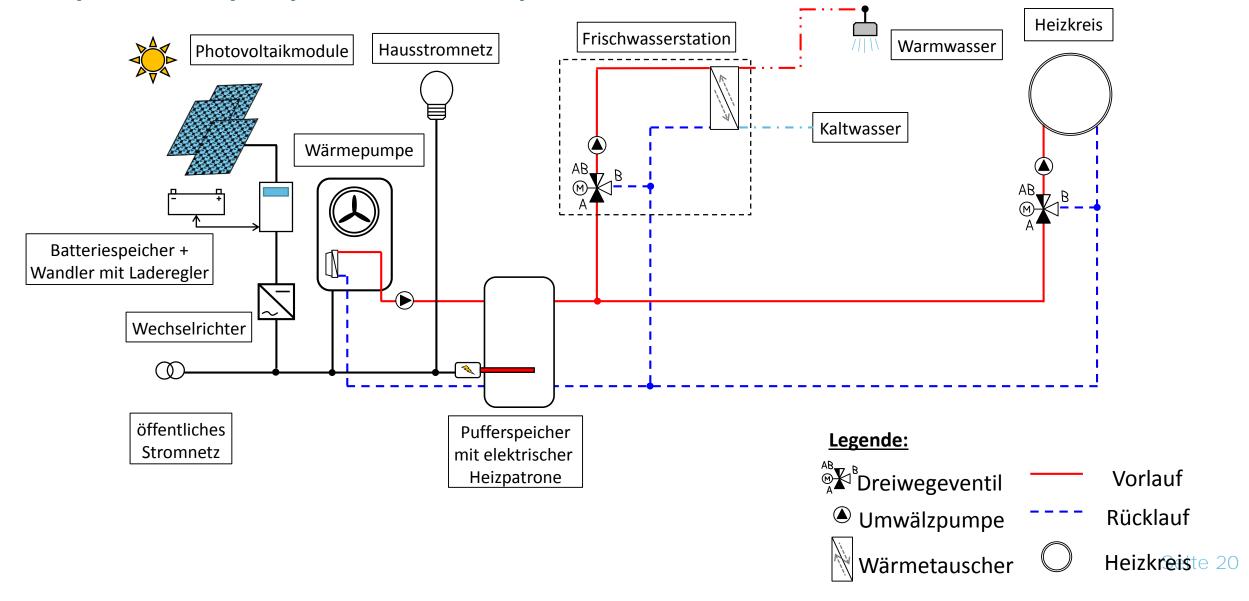
Bei der korrekten Auslegung der Heizleistung der Wärmepumpe am Bivalenzpunkt von -5°C beträgt die theoretische Wärmeleistung dieser Wärmepumpe bei 10°C ca. 200 % des Wertes von -5°C


Unter Annahme eines Regelbereiches des drehzahlgeregelten Verdichters der Wärmepumpe von 20% bis 100 % müsste die Wärmepumpe im Betrieb nicht takten

Beispiel Wärmepumpenanlage mit Flächenkollektor

Beispiel: Heizlast 5 kW; Flächenkollektor; TVL//TRL 45°C//35 °C; var. Abstände zum Grundwasserleiter; var. Kollektor-fläche; bindiger Tonschluff

Abstand zum Grundwasserleiter 0,5 m; Kollektorfläche korrekt → JAZ ca. 5,1



Abstand zum Grundwasserleiter 2,0 m; Kollektorfläche korrekt → JAZ ca. 4,21

Beispiel Wärmepumpe/ PV/ Batteriespeicher

Hydraulischer Abgleich der Heizungsanlage Grundsätzliche Vorgehensweise

- > Ermittlung spezifischer Heizlast aller Räume
- ➤ Definition Systemkonfiguration mit Auslegungstemperaturen (Wärmeerzeuger, Wärmeübergabe)
- ➤ Berechnung der Massenströme

- Einstellung Förderhöhe Pumpe und Vorlauftemperatur keinstellung Verfahren

 Datenschieber

 ✓ereinfachte Planung 5511.5

- ➤ Vollständige Nachrechnung des Systems

ZVPLAN

Abb. 37: ZVPIAN Programmübersicht

Fazit für Wohngebäude

Allgemein: Kosten für Wärme und Elektrizität gemeinsam betrachten

- alle "zukunftsfähigen" Heizsysteme erfordern eine sorgfältige Auslegung und Berechnung → Nutzung der Zeit zur Schaffung eines Planungsvorlaufes
- welche anlagentechnische Kombination wirtschaftlich dargestellt werden kann, ist immer vom Einzelfall abhängig. Die höheren Investitionskosten für 2 oder mehr Erzeuger müssen wirtschaftlich darstellen lassen!
- perspektivisch werden im Bereich <u>Neubau von Gebäuden</u> die laufenden Kosten für Haushaltsstrom z.T. deutlich über denen für Gebäudeheizung und Warmwasserbereitung liegen
- die Installation einer PV Anlage stellt unter aktuellen Rahmenbedingungen bei geeigneter Ausrichtung und Zeitprognose i.d.R. eine wirtschaftliche Investition dar.

Referent: Stefan Thieme-Czach

Sächsische Energieagentur - SAENA GmbH

Telefon: 0351 - 4910 3179

E-Mail: stefan.thieme-czach@saena.de

Internet: www.saena.de

